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TECFAEAL NOTE: No. 16Q 

COMBIXATTONS ATSUBSORE, TRNFSORIC, 

AND -oNIc! SW 

By John R. Spreiter 

A method based on assumptions similar to those of Munk's 
airship theory end R.T. Jones ' lowdspect-ratio pointed-wing 
theory has been developed to determine simple closed expressions 
for the load distribution, lift, pitching moment, and center-of- 
pressure position of inclined slender wing+ody configurations 
having flat-plate wings extending along the continuation of the 
horizontal diameters of circular fuselage sections. Expressions 
for the aerodynemic properties of triangular wings in combination 
with conical bodies, semi-infinite cylindrical bodies, and bodies 
pointed at the nose but cylindrical at the wing root have been 
developed in detail for all ratios of body diameter towing span. 
In all cases, the lift-curve slope of the wing-body combination was 
less than that of the wing alone. For the case of the triangular 
wing end the body pointed at the nose but cylindrical at the wing 
root, the loss in lift-curve slope reached a maximum of 25 percent 
at.the large diemete~pan ratio of 0.707. With a conical body 
mounted on the same wing, the maximum loss of lift-curve slope was 
only about 8 percent and occurred at about the seme diameter-span 
ratio. 

It is shown that the results are applicable at subsonic end 
tiensonic speeds, and at supersonic speeds, provided the entire 
winghody combination lies near the center of the Mach cone. 
Furthermore, It is pointed out that the assumptions related to the 
study of low~spect-ratio pointedbodies and the study of moderate- 
aspect-ratio pointed bodies traveling at sonic speed both lead frcan 
Prandtl's linearized equation for compressible flow to the tw+ 
dimensional Laplace's equation in the transverse plene although by 
different means. 
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The determination of the potential distribution for an inclined 
moderat-spectiatio wing at sonic speed is therefore mathematically 
equivalent to the determination of the poteritial distribution for an 
inclined lo-spect-ratio wing in.an incompressible fluid. 

INTRomcTIoN 

In the quest for airplane configurations having aerodynamic . 
properties favorable for supersonic flight, one of the more 
promising configurations involves the use of a low-aepect-ratio 
wing. When the general layout of such an airplane is considered, 
however, comparatively large fuselages are often found necessary. It 
thus becomes important to study the aerodynemice of a complete wing- 
body cabinatian throu&out the entire Mach number range of the air- 
plane. In an incompressible medium, the mutual interference of-a 
fuselage and wing of high-aspect ratio (to which liftineline theory 
is applicable) has been treated by Lennertz, Wieselsberger, Pepper, 
and Multhopp.in references 1, 2, 3, and 4. It is the purpose of this 
note to treat the effect on the aerodynamic loading of the mutual 
interference between a low-aspect-ratio pointed wing and a fuselage 
consisting of a slender body of revolution. 

Yhe aerodynemic properties of slender win@ody configurations 
may be approximated by the method originally used by Munk in studying 
the aerodynamics of slender airships (reference 5). R. T. Jones 
(reference 6) applied this method to the study of low-spect-ratio 
pointed wings and Ribner (reference 7) extended it to determine the 
stability derivatives of low+specl+ratio triangular wings. The 
essential point in the study of slender bodies by this method is the 
fact that the flow is approximately twoitimensional when viewed in 
planes perpendiculer to the direction of motion. Methods of classical 
hydrodynamics may then be employed to determine the load distribution, 
lift, end center of pressure. 

It has been shown by Tsien, Laitone, and R. T. Jones (references 
8, 9, and 6) that the aerodynamic properties of very slender bodies 
of revolution and lowespect-ratio wings at small angles of attack 
are unaffected by coropressibility at subsonic and supersonic speeds. 
A similar result will be shown for slender wing4od.y combinations. 

SYMBOLS 

A aspect ratio.( !+) 
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lift coefficient of ting without body 
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pitchingm~nt about apex of wing 

free-stream Mach number 
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velocity of flight 
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static pressure 

free-stream dynamic pressure 

polar coordinates 
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maximum semispan 
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velocities in y and z directions 

cartesian cocrdina~s 

distance from apex to center af pressure 

velocity potential 

streamfunction 
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transformed rectangular coordinates 
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density of air 

Subscripts 
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General 

The flow around an inclined win@ody combination of very low 
aspect ratio maybe approximated by considering it to be two 
dimensional in trensverse planes (perpendicular to the fuselage 
center line). It can be shown as a consequence of this assumption 
that the flow in each transverse plane is independent of f&at in 
the adjacent planes. Consider a coordinate systemmoving downward 
through the air with a velocity Ua. The wineody ccmbinationis 
now considered to be flying in the negative x-dire&Ian with a 
velocity U and angle of attack a so that the fuselage center line 
coincides with the xexis of the coordinate system and the plane of 
the wing coincides with the 2 = 0 plane. (See fig. l(a).) The 
flow pattern, then, in the arbitrary x = ~0 plane during the time 
of the passage of the wing-body combination is approximately similar 
to that of the transverse flow around en infinite cylinder having a 
cross section similar to the local wing&ody section. Observed in 
this plane, the semispan of the wing and the radius of the fuselage 
change with time as the wing41ody combination moves through the 
plane. The resulting unsteady nature of the flow pattern produces 
pressure differences betweencorresponding points on the upper and 

* lower surfaces of the ting and fuselage. The following analysis, 
therefore, consists of three parts: determination of the velocity 
potential for the two-dimensional flow'around the wing-body sections, 

. determination of the distribution of load over each section, and 
integration of the loading to determine the total lift and pitching . moment. Several examples ere included presenting the total lift, 
center of pressure, and load distribution for typical complete wing- 
body configurations. 

Velocity Potential 

It is necessary for the .subsequent analysis to lmow the velocity 
potential for the unsteady two-dimensional transverse flow field 
around en infinite cylinder,the cross section of which is varying 
with time in such a manner that it always remains similar to the 
wing+ody section in the x=x, plane. Due to the infinite rate of 
pressure propagation in an incompressible fluid, the study of the 
unsteady flow of an incompressible fluid is greatly simplified since 
the flow field at any instent is identical to that of the corresponding 
steady+tate flow. The first step in the solution of the present 
problem, therefore, is to determine the velocity potential for the 
steady-state flow around an infinite cylinder having a cross section 
similar to the wing-body section. El this enalysis, only wing+ody 
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ccmfigurations having circular fuselage sections andfla-late 
wings extending along the extension of a diameter will be treated. 
Ihe flow around such a section may be obtained from the transverse 
flow around an infinitely long flat plate by applicatiw of the 
principles of conformal mapping using the Joukowski transformation. 
Thuawe consider the mapping shcwn in figure linwhich the 5 
plane will be mapped onto the X plane by the relation 

where 

and 

X = y+iz 

!Lhe ccmtplex potential fmcticn for the flow in the 5 plane is 
( see, for instance, reference 10) 

W' = (p' + ilp = -1lJa J-&Z (2) 

where the primed symbols indioate values in the 5 plane as opposed 
to theX plane. It is also shown in reference 10 that, if d=2a, the 
flow around a flat plate expressed by equation (2) transforms by 
equation (1) intd the vertical flow around a oircle of radius a having 
its center at the origin. If d is taken larger than 2a, the flat- 
plate flow transforms into the desired vertical flow around a cylinder 
consisting of a uiroular cylinder of radius a with thin flat plates 
extending outward along the extension of the horizontal diemeter to a 
distance a from the origin. When the 5 plane is transformed into 
the X plane in this manner, the complex potential for the flow in 
the X plane is found to be 

eince the pointd in the f plane correspmdsto the points in the 
xplane. The velocity potential cp for the flow in the X plane may 
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I . . . 

then be found by squaring equation (3), mbetitutlng X = r (COB ~9 + i. ain e), and solving. 
!mlalsollt!ilned 

- (lt$)r%oa 2&s 2 (l-t$) ] + jr{ 15) +2a%os 49+a4 (19 )L (19) (li$) r2cos 20 

(4) 

prhere i%e slep Is poeitlve ln the upper half plane (O<e<*) and ne@lve ln the lowsr half 
plam (rt<8<2x). 

Load Dlstzlbutlon 

Once the velocity potential of a flow field la known, the methods of cLm3loal hydrc- 
dynamicsmaybe applied to detamin.3 the presmre atanygolnt ln the field. Oomlder a&n, 
the cme shorn in flgmm lwhere the Kingbody cmublnatlonls~lerclng the x=x. plane. AE 
prevloueLlynot~d,tbe flow in the x=x.,, plane la comlderedtobe similar to the tuo- 
dimensional flow sorrouudlngan lnfinlt3lylongoyllnderhavingthe shape of tJm tigybody 
crow section intemectedbgthe mxoplane. Iftberadlwoftbebody a'endthemmlepan 
of the Hng a are consideredto be functions of tlme,equatlon(4)maybe thought of YES 
representlngtbe vt3locltypotentlal of t&e unsteady flow in l&e x=x. plane, In the cam 
ofunsteady izm-dhensld potential flow of an lncanpreselble fluid, the pressure at any 
point fixed ln the ooordlnate system la given by (EW, for k&awe, reference XL, p. 19) 

It w be seen tkt this expression reduces to the well-known Bernoull~s equation for the 
preaswe in a stemQ flow field when the velocity potential IB lnvarlmt with time 

and the arblt& function of time F(t) le a constant. 
2-O 

(5) 
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For any two corresponding points P1 and P2 (fig. l(b)), so 
selected that- yl = y2 and z1 = -z2, the differential preseure at 
any Instant ie given by 

4 P=+ ag2 a(k 1 
- = -- = at P P 

- - + - - 2 (v&w29 
at 

+ ; (vp+wp) 

= + 2 ~ - 1 (vg%w2”) + IL at 2 r?' 
v12+Q2) (6) 

EKLIlCe 
acp2 acpl 

-at=at 
by reason of symuetry of the flow field. Now if 

the point8 are brought to tie an&body surface 

v22+w22 = v12uw12 
the differential pressure between any two corresponding pointe (or the 
loading) is given by 

4 3% 
-=++2 P 

(7) 

Utilizing the relationship 

acpl -= 
at 

and dividing equation (7) by $U2, the loading coefficient is found 
to be 

ia(p1 

> 
(9) 

!JBe load distribution may now be obtained by substituting the 
expression for the velocity potential given in equation (4) into 
equation (9) and letting 800 or 0=x for the wing loatig end 
r=a for the fuselage loading. The-loading over the wing is then 
found to be gfven by 
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and that over the fuselage is given by 

9 

1 (10) 

() I 4, =: Z.l- 
.TF 

( 3 +q23-$-cos263 

/(i +$) -2 g COB 20 
4 

(11) 

I 4 k / 

Ia Cartesian coordinates,the loadlng over the fuselage is 

cx. T- =4c 

J 

0-Q) 1 
TotalLiftandmnt 

Theto~llftandpitchingmosnentof acrxqletewing-body 
ccanbination may be determined by intewating the loading over the 
entire plan-form axea. It is convenient to caxry out the integra- . 
tionbyfirstevaluat~ the lift on one spanwise strip and then 
integrating these elemental lift forces over-the length of the wing- , 
body cwnbination. 'Ihe lift on a spanwiee strip of width dx is 
given by 

a=2q69[ $9(:x asin d9 +[ ($k dr] (13) 

or, in Cartesian coordinate6 

(14) 



10 NhCA TN No. 1662 

When the indicated operations are performed, the following expree8Fon.B 
for the elemental lift-on.-the wing and body are obtained. 

Noting that 

(16) 

equations (15a) and (1%) may be combined and simplified-to give the 
following expression for the total lift on ag qlemsn&al spanwise strip. 

. 

I 

. 

. 
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l%e lift, pitching moment, and center pf pressure of the complete 
wing-body ccmbinationmay nowbe detexminedby integration of the 
lift of all the elemental strips 

L=qf&@ti 

X a 
c.p. =-L 

m 

(20) 

11 

where the integration interval extends fram the most forward point 
to the most re ezwardpointof the win@odyconfiguration. The lift 
coefficient, moment coefficient, and center of preesure may be 
determined from equations (x8), (19), akd (20) by division by 
appropriate constants 

xC.p. cm -z-b C % 

(22) 

(23) 

where S is the reference area end c the reference chord or 
length. 
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Effect of Compressibility 

In contrast to the well-known infinite~spect-ratio case where 
the pressures on the surface of awing are influencedby compressi- 
bility in a manner described by the Prmdtl-Glaue,-t relation, it has 
been shown by several investigators that the pressures on very low- 
aspectrratio wings and very slender bodies of revolution 8;ce 
unaffected by CcmrpmSSibility. This result has been found.by Jones 
(reference 6).for low-aspeot-ratio 

9 
ointed wings at both subsonic 

and supersonic speeds. B. G&hert reference 12) extended the low- 
aspectiatid rectangular wing theory of Bollay (references 13 and 14) 
to include the influence of cmpressibility and found no effect in 
the subsonic range. For a very slender inclinedbody of revolution 
at subsonic and superscmic speeds, Laitone and Tsien (references 9 
and 8) have found that the loading was unaffected by compressibility. 
That such is also the case for slender inclined, pointed win&body 
combinations follows frcm cmsideratim of the basic differential 
equation of linearized cmnpressible flow. In addition, It will be 
shown that the aspect-ratio range to which the theory Is applloable 
becomes tiger as the Maoh number approaches one. 

Prsndtl (reference 15) has found the linearized differential 
equation for the velocity potential of'ccmpressible flow to be 

Ta the development of the expressions for the forces on long slender 
a2cp wh@tody cm.fibfnationa, It has been assumed that m is so mmh 

smaller than 3 and T 
as2 

that the first term of equation (24) 2 

may be neglected. Therefore, solongas the tem(l-Mo2)~ 

in the differentialequatimremains small,Machnunibertillhave 
little influence on the distribution of the velocity potential. 
Consequently, Maoh nmiber has little effect on the aerodynamic 
characteristics of a long slender win&~ody ccmbination at either 
subsonio or supersonic speeds. It is immediatelyappazentthat the 
Mach number cannot be increased indefinitely, for then the coeffi- 

a% cientof - ax2 becamss so large that the first term will no lmger I 
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be negligible. The required condition will be, satisfied, however, 
if the body has a pointednose, the wingapointedplanform, end 
the entire ting-body combination lies neer.the center of the Mach 
cone. All these conditions, however, correspond to those originally 
assumed In the derivation of the expression for the velocity potential 
(equation (4)). Therefore, the present theory is applicable at 
supersonic speeds, as well as subsonic speeds, provided the entire 
win&ody combination lies near the oenter of the Mach cone. 

It has been shown by Robinson and Young (reference 16) that, 
for finite aspect ratio, the linearized theory of compressible flow 
(equation (24)) remains theoretically consistent and yields finite 
and continuous lift-curve slopes in the transonic range. Recent 
experiments on trfangular wings at transonic speeds support this 
contentfon by indicating agreement between measured and computed 
lift-curve slopes. merefore, to predict the flow around a body 
traveling at or very near sonic velocity, it is correct, unless the 

term 3 
ax2 

becomes extremely Large, to let Mo=l and solye the 

remaining equation for the potential distribution. The remaining 
equation is the two-dimensional Laplace's equation in the transverse 
plane. This means that, althou& the veloc-ity potential may vary 
in the longituddnal direction, ite value at each point may be 
determined solely by studying the flow in the transverse plane 
containing the point in question. merefore, since thfs fs precisely 
the manner in which the potential distribution was obtained, the 
results of the present analysis are applicable at transonic speeds. 
In fact, the present theory is most applicable to wing-body 
ccmbinations of .moderate aspect ratio if the Mach number is one,since 

it is then no longer necessary to assume that a2q - is very much 

c9, and cq ax2 
smaller than . 

w a22 
J.n retrospect,the assumptions related to the study of low+mpect- 

ratio pointed bodies and the study of moderate-aspect-ratio pointed 
bodies travelin 

'f 
at sonic speed both lead from the Rrandtl equa- 

tion (equation 24)) to the twc+dImensional Laplace's equation in 
the transverse~plane although by different means, The low-aspect- 

ratio theory neglects the term (1-Mo2) $ 
a29 inccanparisontith - 
w 

and B because a29 \ 
a22 

- is very small; while the moderate-aspect- ax2 
ratio sonic theory neglects the same term because (l-Mo2) is zero. 
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Thus the d&ermination of the potential distribution for an inoldned 
mderate+spe,otiatio wFng at the speed of sound is mathematically 
equivalent to the detmmination of the potential distribution of an 
inolined low-speckratio wing in an incompressible fluid. 

For a givenwing-body oonfigurationccu@yingtith the general 
requirements of the present theory, the load distributim may be 
determined dlreotly by substituting the proper values for the body 
radius andwing semispanandtheirrate of ohenge w'ith x into 
equations (10) end (11). In addition, closed expressions for the 
lift, pftching mment, and oentee-gressure position of several 
elementa;ryconflguratlansmay~adilybefoundbys~le integration 
of the integrals lndioaked by equatimm (2l), (22), and (23). 
Several such examples will be presented in detail 3x1 this seotion, 
and. the results will be acmpared in the following section with those 
obtainedfrmlinearr theory andfromexperiment. 

Podnted Low4spec-HIatI.o Wing 

Although-the assumptions ofthisnote have been usedpreviously 
by R. T. Jones 3n reference 6 to determine the aeroaynamio properties 
of low-aspect-ratio wings, the load distribution, lift, and 
plt,ohingmnrmntwiU. be rederived for cm.@eteness of presentation 
and to show a smle application of the preceding expressions. !f!k 
aerodynamio propert9es of a l- peotmatlo wIngwdthoutfuselage 
may be dstermlnet by lett3ng 

By substitution of these values into equation (lo), it follows that 
the load distribution along any elemental spanwise strip is 

The loading (fig. 2(a)) thus shows an Infinite peak along the 
leading edge of the WI&. Thetotalload onanelemental epamise 

. 
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strip is found from equation (17) to be 

de 4nc4s - 
.dx (26) 

Equations (25) end (26) show that the development of lift by the 
long slender wing depends on an expansion of the section6 in a 
downstream dilrection. Acaordlngly, apart of thewlnghaving 
parallel sides would develop no lift, tiile a part havtig contract+ 
ing width would have negative lift with infinite negative loads 
along the edges. lh the actual flow, however, as R. T. Jones points 
out (reference 6), the portian of the wing behind the.maximum oross 
section will lie in the viscous or turbulent wake fornaed over the 
surface ahead. Consequently, the infinite negative loads will not 
be developed on these edges. With the atd of the Kutta oondition, 
Jones then concludes that no lift is developed on sections aft of 
the maximum cross section. !l%is is known to be an overetiplifica- 
tion of the truth and considerable caution should be exercised in 
applying the present results in the case of constant or gradually 
oontracting width. 

. 

The lift coefficient for this wing is found by integration of 
the load on the elemental strfps between the leading edge end the 
widest section as indicated by substituting equation (26) i&o 
equation (21) 

C’ 

CL = + 
s 

4mcs 4m Bmaxsda I 5 4f?&,x2 (27) 
0 

$$3x=--g- 
2a s 

= $Aa 

where c' is the effeotfve wing ahord and 48”“2=A 
4 

, the aspect 

ratio. It is seen that the lift--ourve slope da depends only 
on the aspect ratio. It should be noted, however, that the actual 
lift force depends only on the span and angle of attack and not on 
the aspect ratio or the area. 

By similar substitution and Integratiozi by parts of equation 
. (22), the pitching moment about the leading edge is 

0’ 
1 cm=-- 4max2 4(S2)m - so s s s 1 0 

&~~~xd.x=-~$.a 1 
(28) 
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0) 
Where (se) 

m s 
s'dx and where moments tendlng to produce 

0 
a nosing-up rotation are considered positive, The senter-of- 
pressure location is then found by dividing the moment coeffioient 
by the lift ooefficient as indloated in equation (23). 

For a more speoifio example, oonsidm a trian@.ex wing moving 

point foremost. Then since (~32)~ = $ k2 and o'=c, the pitching- 
mamsnt ooefficlent snd oentexwS--pressure position are given, 

x0.P. 2 respeotively, by Cm = --EAa and 0 = - . 
3 3 I The center of pressure 

is seen to be at the two-thirds chord point or the center of szwa, 

Pointed Slender Body of Revolution 

The presentmethodfor treating the floweroundlong slender 
bodies was introduced by Munk in referenoe 5 for the determination 
of the distribution of foroes along the lcagitudinal axis of a body 
of revolution (airshlp hull). In the present se&ion, these results 
till be redsrived. In addition, expressions for the total Uft, 
pitohing mcuuent, snd load distribution will also be presented. 

For the slender pointed body of rsvokction, the following rela- 
tions exist: 

a -= 1 da ds -=- 
S dx dx 

where da z is not necessarily constisnt. IT these values are 
substituted into equations (U) and (l2), the loading distribution 
alonganyelementalstrip is 
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The load distribution (fig. 2(b)) is thus seen to be elliptical, 
being zero at the extremities of a horizontal diameter and a maximum 
at the midpoint. The total load on an elemental spanwise stri? is 
found from equation (17) to be 

(31) 

where B is the local cross-section area. It is seen that equation 
(31) is identical to equation (26) for the integrated load on an 
elemental spanwise strip of a triangular wing, even though the 
distribution of load in thetwo,cases is widely different. In 
contrast, however, to equation (26), which is to be applied only to . 
wings of increasIng span, equation (31) may be applied to bodies of 
revolution in regions of either increasing or decreasing radius, 
since the Kutta condition does not apply to bodies of revolution. 
Thus, in general, the lift and pitching moment of a body of revolu- 
tion are different from those of a wing of identical plan form; 
however, if the maximum diemeter of the body of revolution is at 
the base station, its lift and pitching moment are.equal to those 
of a ting of identical plan form at the same angle of attack. 

As before, the lift coefficient till be determined by substituting 
equation (31) into equation (21). wing the area of the base cross 
section Rb as the reference area and integrating over the length 
of the body 2 the lift coefficient is found to be 

(32) 
l 

since the cross-section area B is % at x=2 and zero at x=0. 
It is thus seen that the lift of a slender body of revolution depends 
only on the crosmection area of the base, and is independent of 
the general shape of the body. A possible effect of viscosity is 
indicated by such a relationship since the effective base area of 
the body will be larger than the true base area by an amount 
dependent on the boundary-layer thictiess. Therefore equation (32) 
will probably tend to underestimate the true lift-curve slope, 
particularly at lower Reynolds numbers where the boundary-layer 
thickness is greatest. 

By similar substitution and integration by parts, the moment 
coefficient about the leading edge fs 
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-xdx=4a 

where Bm is the mean cross-section area (i.e., the volume of the 
body divided by the length). The center-of-pressure location is 
then found through use of equation (23) to be 

%.p. cm -z--z 125 
2 CL % 

For a more specific example, consider a cone moping point foremost;- 
The base cross-section area Is 

The mean cross-section area is 

The center ofpressure de l&us se.en.to be at the two-thirds point as 
would be anticipated-by the conical natuzck of the load distribution 
for this case. 

. 

Triangular Wing With Conical Body 

The first example of a win-ody combination to be considered 
is that of a conical boQ mounted on a triangular wing so that their 
vertices coincide. The geometry of such a configuration requires 
that 

da ds where both dx end dx are con&e&s. If these values are 

substituted into equations (10) and (l-l) as described in the two 
preceding examples, the load distribution along any elemental strip 
on the wing is given by 

. 
. 

. 
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and on the body by 

19 

(3!m 

Figure 2(c) shows the.1oe.d distribution on a typical wing4od.y 
combination of this type together with the load distribution on the 
same wing without body. 

. The integrated load on an elemental strip is 

d L 
z 4 q= 

0 
4fla-q~ 2 (l+k4+ @k(l-k2)-(l+k2)2sin-1~)= &'cc~qs$+R) 

where (36) 

R=k4+& 2k(l-k2)-(1+k2)2 aIn-' & 1 
The lift coefficient for the entire conical win&body aambination is 
then 

CL = $a (l+R) = CL&l+R) (37) 

where Ck is the lift coefficient of the basic triangular wing. 
a 

!lhe area and aspect ratio of the wineody configuration are 
considered to be equal to those of the basic wing. Due to the 
radial nature of the lines of constentpressure, the center of 
pressure lies at the two-thirds chord point 

x c.p. 2 
-=- C 3 

The moment coefficient is then obviously 

cm = -5 Acc(l+R) = \(l+R) (39) 

(381’ 

where, similar to before, G represents the pitching moment of 
the basic wing. Figure 3 shows-the variation of q&/C& with 
ratio of body d&meter to ting span for this type of wing:body 
combination. While the ting alone and body alone have identical 
lift-xrve slopes since the widest section is at the trailwdge, 
the lift-curve slope of the wing+ody combination is always less 
than that of either a wing or body alone. The maximum loss of 
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lift-curve slope (about 8 percent) occurs when the body-radius 
wlng-semispan ratio is approximately 0.7. c 

Triangular Wing on a Semi-Infinite Cylindrical Body 

The next example to be considered is that of a triangular wing 
mounted on a semi-infinite cylTndrical.body. The essential relatlon- 
ships to be used are that 

d.a -= 0 
dx 

and that ds/dx is constant. By using these relationships as in the 
previous examples, it is found that no lift is carried on the body 
ahead of the leading edge of the root chord. Behind this point, 
however, lift is carried on both the w3zg and body and is distributed 
on any elemental strip of the wing in a manner described by 

= 

4+Il-$) - 

jt + g’-$ +$44for azyLs i40a) 
andonthe bodyby 

The load distribution at one lmgitudinal station of a typical wing- 
body configuration of the type considered In this example is shown 
in figure 2(d). For purposes of comparison, the load distribution 
over the same wing tithout the body is also indicated in figure 2(d). 

The integrated load on an elemental strip is given by 

(1-s) (41) 

By integration along the length ofthe body, the lift-coefficient for 
the complete winebody combination, based on the area of the basic 
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triangular wing without fuselage is found to be 

21 . 

CL -& >'= ~w(d-&~ (42) 

It may be seen from equation (42) and fig~e 3 that the addition of 
a semi-infinite cylindrical body to a triangular wing produces a 
loss in lift-curve slope just as in the preceding example with the 
conical body. With the cylindrical body, however, the lift-curve 
slope has no minimum value, but continues to decrease as the radius- 
semispan ratio increases until finally, when the latter ratio is one 
(corresponding to a body without wings), the lift-curve slope is zero. 
This is as it should be, since a semi-infinite cylindrical body has 
zero lift-curve slope. The moment coefficient about the vertex of the 
baeio triangular.wing is 

Cm 
mcA 

=-3 1-4%x3+3k4 
( 

as 
- -9cbw(l-4~+3.~) . 

(43) 

The centemf-ressure position of the complete wing-body combination 
is given by 

a 2 
%=2+4 %lax 

0 
i( >’ 

3 3 -, 
l+ cx 

Since the center of pressure of the wing alone is at the twwthirds 
chord point, it may readily be seen the second term of equation (44) 
represents the change due to the addition of the body. Figure 4 
shows the variation of the center-of-pressure position with the ratio 
of body radius to wing semispan. In contrast to the constant center- 
of--pressure position of the previoue example for the triangula-ing, 
conicalGbody combination, the center of pressure of the triangular 
wing, semi-infinite cylindrical body combination moves rearward as 
the body radius becomes larger with respect to the wing semispan. 

Triangular Wing on a Pointed Body 

The case of a triangular wing mounted on a pointed bo.dy, closed 
in an arbitrary manner at the noae but cylindrical along the wing 
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root chord, may be studied by combining the results of two previous 
examples. The portion of the win@ody combination ahead of the 
leading edge of the wing root may be considered to be equivalent to 
the arbitrary body of revolution treated in the second exam@e. The 
portion:of-the win@ody combination aft of the leading edge of the 
wdng root is equivalent to a triangular wing mounted on a semi- 
infinite cylinder as discussed in the preceding example. The load 
distribution and the integrated load on any elemental apanwise strip 
are then the s&me as those given in the corresponding example. 

The lift coefficient-is found by adding the lift-forces of the 
component parts of the tin@ody combination and dividing by the 
dynamic pressure q snd the characteristic area, again taken to be ' 
the area of the basic triangular wing. The lift coeff-icient is then 
found to be _ 

(45) 

Figure 3 shows the variation of the Uft-curve slope tith body-radius 
win6+semispan ratio. A comparison of the 1iftrOurve slopes shows 
that-the loss in the lift of a triangular ting resulting fram the 
addition of a body having a pointed nose is much less than that 
resulting from the addition of a semi-infinite body. 

The moment coefficient for this tin@body combination may be 
found in a manner similar to that used in finding the lift coeff'i- 
cient, taking care to trensfer the moments of both component parts 
to the ssme axis. The moment coefficient about the vertex of the . 
baeic triangular wing is 

fic& cp-T1-*s+3~4 ( -)+[2&!2(+~) ] 
-. 

where a represents the radius of the cylindrical portion of the 
fuselage, 2 the over+~lllength of thewin~odycombination,snd 
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Bm the mean cross+ectional area (i.e., vol&e divided by length) 
of the portion of the body ahead of the leading edge of the wing 
root. 

COMPARISON WSI!K O!l?KER RXSUL!lB 

As shown in the preceding sections, it 18 a caparatively simple 
matter to calculate the load distribution, lift, and center of 
pressure of complete wing+body configurations by means of the present 
theory. It has been shown that the theory la most applicable at Mach 
numbers near 'one or for configurations having very low*spect-ratio 
wings. Its accuracy at other Mach numbers or at larger aspect ratios 
can best be assessed by comparison with experiment or more nearly 
exact theory, where available. 

CC@~~~iscms with available theoretical and experimental lift- 
curve slopes of trianguler wings of varying aspect ratio at super-. 
sonic and subsonic speeds are shown in figures 5(a) and 5(b), 
respectively. In the supersonic range (fig. 5(a)), the linear theory 
solution of Stewert, Brown, and others (references 17 and 18) for 
the variation of lift-curve slope with aspect ratio is shown for 
Mach numbers of 1.0, 1.2, end 1.4. At a Mach number of 1.0, it la 
seen that the present theory exactly predicts the linear theory 
value of the lift-curve slopes of triangular wings of any aspect 
ratio. Increasing the Mach number decreases the degree of correla- 
tion at the larger aspect ratios. In summary, this figure indicates 
that the present theory is very accurate for slender wings at low - 
supersonic speeds where the wing is neer the center of the Mach 
cone, and decreases in accuracy as the wing becomes larger with 
respect to the Mach cone. 

In the subsonic case (fig. 5(b)), no lifting-surface theory 
for the triangular wing comparable to the supersonic triangular- 
wing theory exists, and all comparisons will be made directly with 
experiment. Three test points from reference 19 are shown for 
wings of aspect ratio 0.3, 1.0, end 2.0 tested at very low Mach and 
Reynolds numbers in the Langley free--flight tunnel. As in the 
supersonic case, the accuracy is best at very low aspect ratios 
and decreases as the aspect ratio increases. 

A compakison between liftiurve slopes for a complete wing- 
body combination consisting of a conical body and a triangular 
wing calculated by the present theoryand by supersonic conical- 
flow theory is shown in figure 3. A curve presented by Browne, 
Friedman, andHodes (reference 20) for the lift-curve slope of a 
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wing+ody configuration consisting of a conical body having a fixed 
radius of 0.1322 the Mach cone radius and a triangular wing of 
varying span is shown by the.dotted line in figure 3 tug&her with 
the corresponding curve obtained by-the present theory, These two 
curves never differ by as much as 1 percent, indicating that the 
present theory and the conical-flow theory are in close agreement 
in predicting the lift-curve slope at supersonic apee,& of a wine 
body combination consisting of a slender conical body and a low- 
aspect-ratio triangular wing. 

Ames Aeronautical Laboratury, 
National Advisory Committee for Aeronautics, 

Moffett Field, Calif+ 

Correction tu-Loading on Portion of Fuselage 

Aft of WingTrailingEdge 

A method for the calculation of the aerodynemic loading on the 
entire surface of a slender pointed wing-body combination has been 
presented based on the assumption that the flow in each transverse 
plane is independent of that in the adJacent planes. It was note.. 
that the result6 so obtained were not applicable to-the portion of 
a wing situated behind the widest section because the flow in this 
region was influenced to a prohibitive degree by the downwash field 
of the secticms further forward. For the &me reason, the results 
are also inapplicable to the portion of the fuselage aft of the 
wing trailing edge, particularly when the fuselage diameter is 
small in c~parison with the wing span. Since the fuselage is 
usually extended behind.the trailing edge of the wing, it is desir- 
able to determine a correction to apply to the loading expresslone. 

With assumptions more restrictive then those of the main body 
,of this.note, it--is possible to obtain an estimate of the corrected 
loading on the fusehge afterbody. The necessary aesmptions are 
thatmthe downwash velocity in the vicinity of the fuselage with 
fuselage removed is known, and that the downwash velocity remains 
constant throughout-the entire transverse plane at each longitudinal 
station. It is immediately apparent-that the latter assumption is 
not entirely correct, but it 18 true that the downwash velocity is 
approximately constant over a region of limited lateral extent-at 
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each longitudinal station. Since the forces on a body are produced 
predominately by the flow field near the body, this assumption 
should be a valid one as long as the fuselage sections remain in 
regions of relatively constant downwash velooity in each transverse 
plarne. This means that the fuselage diameter must be small in 
comparison with the wing span. 

With the foregoing assumptions, the loading on the fuselage 
afterbody may be determined by an extension of the present method. 
Consider, as in figure l(a), the flow in the transverse plane as 
the fuselage afterbody is piercing the x=x0 plane. The flow field 
corresponding to that of figure l(b) would then be that of the 
vertical flow around a circ~ular cylinder. As in the previous 
analysis, the fuselage radius would, in general, appear to be 
varying with-time. I5 addition, since the downwaah velocity varies 
with distance behind the wing, the velocity of the vertical flow 
would also appear to be varying with time. The correct expression 
for the lift on each strip across the fuselage may then be obtained 
by substituting the local angle of attack a,-E for the airplane 
angle of attack a in equation (31) and adding a correction term 
for the effect of the longitudinal gradient of the downwash velocity. 
The latter correction term may be determined very simply using the 
additional apparent mass concept. The correction to the lift force 
on an elemental strip of unit width across the fuselage afterbody 
is then given by 

Ad L 
=ii 0 

(Al) 

In this equation, the additional apparent mass of a unit length of 
a circular cylinder of cross-section area B is (see, for instance 
reference 11, p. 77) 

and the vertical velocity in any transveraa plane is 

w = u(a-4 (A31 

where s is the downwash angle. The total lift on each elemental 
strip of unit width of the fuselage afterbody is then 

(A41 
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Since the downwash angle numerically equals the angle of attack on 
the wing surface immediately ahead of the wing trailing edge and 
decreases in value as the distance fra the trailing edge increases, 

it is apparent that s. has a positive value and that 2 has a 
negative value. T!bms~, effects of downwash angle in equation (A&) 
tend to cancel.each other. Another item which should be mentioned 
is that the downwash behind wings varies considerably with Mach 
number. Consequently, compressibility will sffeot the lift on 
fuselage afterbodies. 

At subsonic speeds, an upwash exists over the portion of- the 
body extending ahead of the wing, although this upwash is of 
considerably smaller ma&tude than the downwash behind the'wing 
for the slender pointed wings considered here. Equation (Ah) may 
be applied to determine the magnitude of the corrected loading 
taking into account the upwash. 

By using methods similar to those developed in the main body 
of this note rather than the shorter additional apparent--mass 
methods, it can be shown that the load distribution across each 
strip of the fuselage afterbody is elliptic. 
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